Назначение установки — производство водорода, потребность в котором возрастает из года в год в связи с постоянным углублением процессов переработки нефти, повышением требований к качеству получаемых топлив и смазочных материалов, а также в связи с необходимостью обессеривания энергетического топлива. В качестве сырья для получения водорода методом паровой каталитической конверсии легких углеводородов могут быть использованы природные и заводские (сухие и жирные) газы, а также прямогонные бензины. Этот наиболее распространенный метод производства водорода включает три стадии: подготовку сырья к конверсии, собственно конверсию и удаление из продуктов оксидов углерода [5]. Применяемая в настоящее время технология per ламентирует некоторые требования к качеству сырья, в частности по содержанию в нем соединений серы (в газах до 100 мг/м3, в бензинах до 0,3 мг/кг), отравляющих как никелевый катализатор паровой конверсии углеводородов, так и цинкмедный катализатор низкотемпературной конверсии оксида углерода. Присутствие в сырье непредельных углеводородов вызывает образование углеродистых отложений на катализаторе паровой конверсии углеводородов.
В промышленности получают технический водород с содержанием водорода 95—98 % (об.). Производство технического водорода меньшей концентрации приводит к его повышенному расходу на установке гидрокрекинга, а большей концентрации — требует значительных затрат и экономически нерентабельно [6].
Паровую конверсию углеводородов следует вести, избегая осаждения углерода на катализаторе, способствующего его разрушению и увеличению гидравлического сопротивления в реакторе. Для предотвращения этого процесса следует поддерживать некий минимальный расход водяного пара в процессе паровой конверсии углеводородов. Теоретически этот расход не должен быть ниже 2:1. Однако для улучшения теплопередачи на практике подают до 4—5 м3 пара на конверсию 1 м3 метана.
В заводской практике для доочистки сырья для водородных установок нашли применение три типа процессов: очистка моноэтаноламином от сероводорода, одностадийное поглощение соединений серы поглотителем на основе оксида цинка (в случае присутствия лишь термически нестойких соединений серы) и двухступенчатая схема извлечения соединений серы, включающая деструктивное гидрирование сернистых соединений с последующим поглощением сероводорода на оксиде цинка.
Современные установки по производству водорода обладают мощностью от 300 тыс. м3 до 3 млн. м9 водорода в сутки; для них характерны рабочие давления в интервале 2—3 МПа.
Установка состоит из следующих секций: подготовки сырья (компрессор, подогреватель, аппараты для очистки сырья от соединений серы, пароперегреватель и инжекторный смеситель); паровой конверсии (печь паровой конверсии и паровой котел-утилизатор); конверсии оксида углерода в диоксид (реакторы средне- и низкотемпературной конверсии); очистки технологического газа от диоксида углерода (абсорбция горячим водным раствором карбоната калия, регенерация и др.) и секции метаниро-вания. Технологическая схема установки представлена на рис. 1.
Сырье (газ) сжимают компрессором 9 до давления 2,6 МПа, подогревают в подогревателе, расположенном в конвекционной секции печи 8, до температуры 300—400 °С"и подают в реакторы 2 и 3 для очистки от соединений серы. К очищенному газу в смесителе 7 добавляют водяной пар, перегретый до 400—500 °С в пароперегревателе, также расположенном в конвекционной секции печи 8.
Полученная парогазовая смесь поступает в печь паровой конверсии 8. Собственно процесс паровой конверсии углеводородов проходит в вертикальных трубчатых реакторах, заполненных катализатором и размещенных в радиантной секции печи в один, два или несколько рядов, закрепленных только внизу или вверху и обогреваемых с двух сторон. Типичный катализатор процесса — никель, нанесенный на оксид алюминия. Парогазовая смесь с температурой 400—500°С подается в реакционную трубу через верхний коллектор, а конвертированный газ отводится снизу.
Газовые факельные горелки располагаются в своде печи 8, а дымовые газы поступают сверху в нижние борова и затем через общий боров, расположенный в торце печи, с температурой 950— 1100°С — в конвекционную секцию печи. Топливом для печи служит очищенный от сернистых соединений технологический или природный газ. Воздух, необходимый для горения, подается воздуходувкой 4 через теплообменник 6, где он подогревается дымовыми газами до 300—400°С, затем дымовые газы отсасываются дымососом 5 и выводятся в атмосферу через дымовую трубу 1.
Конвертированный газ, охладившийся до 400— 450°С в паровом котле-утилизаторе 10, поступает в реактор 11 среднетемпературной конверсии оксида углерода в диоксид над железохромовым катализатором. После понижения температуры до 230— 260°С в котле-утилизаторе 10 и подогревателе воды 12 парогазовая смесь поступает в реактор 13 низкотемпературной конверсии оксида углерода над цинк-медным катализатором.
Смесь водорода, диоксида углерода и водяного пара охлаждают далее в теплообменниках 6 до 104 °С и направляют в абсорбер 14 на очистку горячим водным раствором карбоната калия от диоксида углерода.
Насыщенный диоксидом углерода раствор поступает из абсорбера 14 в турбину 15, где его давление снижается примерно с 2,0 до 0,2—0,4 МПа, а затем в регенератор 16. Здесь в результате подогрева раствора в теплообменнике 6 и снижения давления из раствора выделяется диоксид углерода и вместе с парами воды выводится в атмосферу.
Водородсодержащий газ из абсорбера 14, подогретый до 300 °С в теплообменнике 6, поступает в реактор метанирования 17, где непревращенный оксид и неудаленный диоксид углерода гидрируются с образованием метана. После метанирования водород охлаждается в теплообменных аппаратах 6 и 12 до 30— 40 °С и далее в сепараторе 18 отделяется от сконденсировавшегося водяного пара. Водород компри-мируют компрессором 19 до давлений, требуемых потребителю (обычно 4—15 МПа).
Конверсия углеводородов ведется при 800— 900 °С и 2,2—2,4 МПа над никелевым катализатором. Расход природного газа составляет 1,03—1,05 м3 на 1 м3 получаемого технического водорода; расход водяного пара—от 0,60 до 0,66 м3 на 1 м3 сухого газа.
Спецификой работы установки, требующей строжайшего соблюдения правил безопасности и правил эксплуатации аппаратов, работающих под давлением, является применение взрывоопасных и токсичных веществ. Установка паровой каталитической конверсии углеводородов для производства водорода часто является составной частью установки гидрокрекинга; ее строительство обходится примерно в 25—30 % стоимости установки гидрокрекинга.