Основное назначение процесса — гидрообессеривание тяжелых дистиллятов, например вакуумных газойлей, являющихся в дальнейшем сырьем установок каталитического крекинга или компонентами малосернистых жидких котельных топлив, а также сырьем для производства олефинов (пиролиз в при сутствии водяного пара) или высококачественного электродного кокса.
Сырье и продукты. На очистку направляют разные по фракционному и групповому составу, а также по содержанию серы и азота тяжелые газойлевые дистилляты, т. е. фракции, извлекаемые при вакуумной перегонке мазутов и имеющие температуру начала кипения 360—400 °С и конца кипения от 520 до 560 °С (в пересчете на атмосферное давление). Нередко тяжелые газойли смешивают с более легкими газойлями, вакуумными или атмосферными (прямогонные дистилляты с температурой начала кипения 230—250 °С и конца кипения около 360 °С). Значение молекулярной массы вакуумных газойлей — смеси фракций от 350 до 500 °С (разгонка по ИТК)— обычно находится в пределах от 310 до 380 °С.
Повышение температуры конца кипения вакуумного газойля, выделяемого из данного мазута, сопровождается возрастанием вязкости, а также показателя его коксуемости [например, с 0,2 до 0,9 % (масс.) по Конрадсону, реже до 1,2 % (масс.)], увеличением содержания в нем серы и азота, смол, тяжелых ароматических углеводородов и металлов, в частности ванадия, никеля и железа.
В результате же гидроочистки плотность, вязкость и зольность газойля уменьшаются; коксуемость по Конрадсону снижается значительно, но температура плавления изменяется мало; большая часть металлов (никель, ванадий) удаляется. Групповой углеводородный состав изменяется в сторону увеличения содержания моно- и полинафтеновых и особенно моноароматических углеводородов на 10— 18 % (масс.) [13].
На рис. 1 представлена схема установки для гидрообессеривания тяжелых дистиллятов, таких, как вакуумные газойли [по лицензии фирмы ARCO Petroleum Products [14]. На данной установке высокотемпературная сепарация фаз проводится непосредственно после реактора. Особенностью является также ориентированное расположение частиц катализатора в реакторе, что достигается проведением специальной операции при заполнении аппарата катализатором.
Исходное сырье, нагнетаемое насосом 3, смешивается с водородсодержащим газом (свежим и очищенным циркуляционным), подаваемым компрессором 1. Полученная газосырьевая смесь нагревается последовательно в теплообменниках 6 и 12, затем в змеевиках трубчатой печи 2. В теплообменнике 6 греющей средой является смесь газов и паров, выходящих из высокотемпературного (горячего) сепаратора 5, а в теплообменнике 12 — стабильный гидроочищенный газойль (целевой продукт установки).
Процесс гидрообессеривания протекает в реакторе 4 с неподвижными слоями катализатора и нисходящим потоком реагирующей смеси. Для регулирования температуры по высоте реактора в одну или большее число зон между слоями катализатора вводится охлаждающий водородсодержащий газ (квенчинг-газ), ответвляемый от основного потока смеси газов.
Выходящая из реактора снизу газопродуктовая смесь разделяется в горячем сепараторе 5. Жидкость из сепаратора направляется далее через редукционный клапан 10 в отпарную колонну 11. Газопаровая смесь охлаждается в теплообменнике 6 и аппарате воздушного охлаждения 7; образовавшийся при этом углеводородный конденсат доохлаждается вместе с газами в водяном холодильнике 8 и затем, пройдя низкотемпературный сепаратор высокого давления 9, присоединяется к гидроочищенным высококипящим фракциям газойля, уходящим из сепаратора 5.
Гидрообессеренная продуктовая смесь продувается в отпарной колонне водяным паром с целью удаления нижекипящих фракций (отгон) и достижения нормированной температуры вспышки.
Водородсодержащий газ по выходе из холодного сепаратора 9 очищается в секции очистки газа от сероводорода регенерируемым раствором этанол-амина. С помощью компрессора 1 очищенный газ возвращается как циркуляционный в линию смешения с сырьем. Предусмотрен вывод с установки части очищенного газа (отдув) через клапан 18. В нагнетательную линию компрессора / вводится свежий водородсодержащий газ.
После теплообменника 12 не полностью охлажденный гидрообессеренный газойль подается насосом 14 в теплообменные аппараты 17 (на схеме показан один) для использования избыточного тепла и охлаждения до требуемой температуры. Отпарная колонна 11 в данном случае является стабилизационной колонной и обслуживается конденсатором-холодильником 13. Одна часть легкой фракции (отгона), собирающейся в приемнике 16, насосом 15 подается как орошение в колонну 11, а другая — выводится с установки. Из приемника 16 сверху уходят газы стабилизации.