Процесс гидрокрекинга с трехфазным псевдоожиженным слоем катализатора предназначен для переработки нефтяных остатков с высоким содержанием смол, сернистых и металлорганических соединений с целью получения малосернистых нефтепродуктов: бензина, реактивного, дизельного и котельного топлив. Сырьем могут служить мазут, гудрон, тяжелые вакуумные газойли, газойли коксования, крекинг-остатки, высоковязкие нефти из битуминозных пород и др. [5].
Выходы продуктов гидрокрекинга меняются в широких пределах в зависимости от качества перерабатываемого сырья и глубины процесса. Одно и то же количество катализатора дает при работе в режиме псевдоожижения глубину разложения в среднем на 20—30 % большую, чем в стационарном режиме, при близком качестве получаемых продуктов. При одинаковой глубине разложения сырья производительность псевдоожиженного слоя в три раза выше производительности стационарного. Гидрокрекинг дистиллятного сырья позволяет получать более качественные продукты, чем аналогичная переработка остаточного сырья [6].
Практика нефтепереработки показывает экономическую целесообразность предварительного облагораживания сырья, поступающего на гидрокрекинг: деасфальтизации, термоконтактного крекинга, деструктивно-вакуумной перегонки и т. п.
Промышленная установка гидрокрекинга (рис. V-3) включает нагревательно-реакционную секцию (печи, реакторы), системы очистки и циркуляции водородсодержащего газа (газосепаратор высокого давления, колонны осушки и очистки, водородный компрессор) и блок газо- и погоноразделения (сепаратор низкого давления, колонны ректификации гидрогенизата).
Сырье установки смешивается с циркуляционным и свежим водородсодержащим газом, и газосырьевая смесь нагревается последовательно в теплообменнике 6 и змеевиках нагревательной печи 5. Нагретая смесь поступает в низ реакторов 2 и 3 через распределительные решетки, обеспечивающие равномерное распределение жидкости и газа в поперечном сечении реактора. Для создания псевдоожиженного слоя в низ реакторов вводят рециркулят.
Парожидкостная смесь после реактора II ступени 3 охлаждается в теплообменнике 6 и конденсаторе-холодильнике 7 и подается в сепаратор высокого давления 8. Отделившийся от жидкой фазы водородсодержащий газ проходит очистку от сероводорода в абсорбере 11, осушку и смешивается с сырьем. Для восполнения водорода, израсходованного на реакции гидрирования, в систему постоянно вводится свежий водородсодержащий газ.
Давление жидкого гидрогенизата, поступающего через редукционный клапан 10 в сепаратор низкого давления 13, снижается до атмосферного. После отделения в сепараторе 13 газообразных углеводородов и частично сероводорода катализат, подогретый в змеевиках нагревательной печи 15, направляется на ректификацию во фракционирующую колонну 17.
Топливный газ отводится из сепаратора 19 сверху. С низа отпарных колонн 20 и 21 отбираются соответственно тяжелый бензин и средние дистиллятные фракции. Вакуумная колонна 22 позволяет получить тяжелый газойль и смолистый остаток.
В качестве катализаторов используют два типа катализаторов — микросферический и в виде гранул размером w0,8 мм. При переработке остаточного сырья — это алюмокобальтмолибденовый катализатор [удельная поверхность 400 м/т, удельный объем пор 0,75 см/т, 15 % (масс.) МоОд и 3,5 % (масс.) СоО], а при переработке дистиллятного— алюмоникельвольфрамовый [удельная поверхность 175 м.т., удельный объем пор 0,33 cм3/г, 6/% (масс.) Ni и 19 % (масс.).